

DisplayPort Compliance Test Update

Granite River Labs Technical Lead of DisplayPort, Jerry Sung

jsung@graniteriverlabs.com

Agenda

- DP/DPC 1.4 Compliance Test
- DP 1.4 up-to-date requirements
- DP/DPC 1.4 Electrical Test Method

DP/DPC 1.4 Compliance Test

Test plan depends on device type and supported features.

Requirements change. Your ATC can keep you up to date.

	Power Delivery Electrical Tests		
	Power Delivery Protocol Tests (including Device Pin Assignments Verification)		
	VBUS and VCONN Verification		
	PHY Crosstalk Test 2+2 (DP & USB)		
DPC 1.4	Billboard Test		
	DP 1.4 (Std, Mini)	DisplayPort Main link Electrical Tests	
		DisplayPort Aux channel PHY	
		Link Layer Test	
		EDID	
		Interoperability	
		Multi-Stream Transport (MST)	

Notes :

1. DP 1.4 silicon must support **Swing level 3**.

GRL 2. Rx DPCD Error checking available and functioning via AUX channel. GRANITE RIVER LABS

DP/DPC 1.4 Compliance Test

Source -

- All DP 1.2 CTS for HBR2 and lower line rates follow current program
- HBR3 main link PHY compliance factoring latest PHY subgroup proposal
- Prove link training and functional verification at HBR3
 - Reference Sinks: RealTek, Mstar
- Sink -
 - All DP 1.2 CTS for HBR2 and lower line rates follow current program
 - HBR3 sink jitter tolerance
 - Prove link training and functional verification at HBR3
 - Reference Source: AMD RX480
 - Symbol error count registers available and functioning via AUX channel (no special programs to access error count)

DPC requirements information

 DPC certification required USB PD controller TID and related chipset information.

Product name	Silicon Vendor	Model	TID
USB PD Controller	Cypress	CYPD4125	1098024
DP Silicon	Intel	Gemini Lake	N/A
MUX used	Parade	PS8743B-B1	N/A
USB Silicon	Intel	Gemini Lake	N/A

Pin assignment E must be supports both on Source and Sink.

DP 1.4 up-to-date requirements

Requirement of Electrical test

 Tx HBR3 Discovery of the optimized CTLE setting and meeting new eye height and Jitter requirements.

HBR3 TP3_CTLE Waveform EYE Height (EH): ≥65mV_diff_pp

 Tx HBR2/HBR3 Level and Equalization is going to be tested with Scope using spectral method.

DP 1.4 up-to-date requirements

Requirement of Aux channel Electrical test

Additional Aux channel Slew rate test.

AUX Slew Rate (20-80%) ≤ 375mV/ns

DP 1.4 up-to-date requirements

Requirement of Link Layer

LT fallback and reduce lane count test will be required test items. (Reduced Lane Count, Test 1) CR failure on Lane2/3

(Reduced Lane Count, Test 1) CR failure on Lane2/3

(Reduced Lane Count, Test 2) CR failure on Lane1/2/3

(Reduced Lane Count, Test 3) Symbol Lock failure on Lane2/3

(Reduced Lane Count, Test 4) Symbol Lock failure on Lane1/2/3

400.1.1 HPD Event Pulse Length Test

400.1.2 IRQ_HPD Pulse Length Test

400.1.3 Inactive HPD / Inactive AUX Test

400.2.1 Link Training CR Fallback Test

400.2.2 Link Training EQ Fallback Test

Chapter 7 of Sink Link Layer Test becomes required test items

7.2.1.1 Sink Organizationally Unique Identifier (OUI)	
---	--

7.2.1.2 Sink count

7.2.1.3 Sink Status

7.2.1.4 Symbol Error Count

7.2.1.5 Device Identifications

7.2.1.6 Number of Receiver Ports

7.2.1.7 Main Link Channel Coding

- HDCP 2.2 is required to be tested if implemented.
- (upcoming) DP 1.4 LL test will be performed with QD980 or UCD-400.

DP 1.4 HBR3 Source Spectral Test

- 1. Acquire Waveform
- 2. Analyze Waveform
- 3. Support Multi-vendor Oscilloscope.
- 4. Advantage of the S/W: Run both GRL and test app of scope simultaneously.

'Source Spectral Test' is a New Source (Chap 3) Requirement GRL has an Approved VESA MOI we use in the Lab prior to TE Vendors GRANITE RIVER LABS

PHY Source Test 2x2 (DP & USB) with USB Crosstalk

For USB-C GRL-USB-PD-C2 Combines Type-C PD Control with DP-AUX Controller to acquire required waveforms 4 Lane Source and 2+2 with xTalk are required by CTS

DP 1.4 HBR3 Source Spectral Test

GRL-DP-Source Software fully Automates Acquisition and Analysis per GRL's approved MOI, uses same framework as GRL Sink SW

10

DP 1.4 HBR3 Sink Calibration

For HBR3, Common mode noise of 100 mV_pp @ 400 MHz is injected into the lane under test.

CM Noise is a new Requirement in DP1.4 Sink CTS (Chapter 4 of CTS) – Implemented in Tektronix BSX MOI

GRANITE RIVER LABS

Tektronix

DisplayPort 1.4 PHY CTS Source & Sink Test Solutions Featuring GRL as Development Partner

BERTScope BSX

Compliance Test Points

- TP1: at the pins of the transmitter device
- TP2: at the test interface on a test access fixture near end
- TP3: at the test interface on a test access fixture far end
- TP3_EQ: TP3 with equalizer applied
- TP4: at the pins of a receiving device

NORMATIVE test points

DP 1.4 CTS Fully Defines TP2 as Normative Test Point Used for Tethered Sinks and Adapters

DP1.4 CTS Source (TX) Measurements (Chapter 3)

Compliance

Full List of Source Measurements to be performed Performed with Tektronix TekExpress SW

DisplayPort Solutions

GRL is Development Partner for DP1.4 Sink Test SW for BertScope BSX MOI has been reviewed and Approved by VESA

DP1.4 HBR3 PHY CTS Sink Calibration

K

Setup Shows how CM Noise is Injected GRL ISI using Artek CLE-1000 tests all data rates with single setup GRANITE RIVER LABS

DP1.4 HBR3 PHY CTS Sink Test

Table 4-52: 7	ГР1/ТРЗ	Crosstalk Settings

Data Rate	Aggressor	TP1/TP3	TP3	EH and BER	Comment
	Pattern	TTC	Amplitude (mVp-p)	Test Pattern	
RBR	D24.3	NA/150 ps	138	PRBS7	
HBR	D24.3	NA/150 ps	450	PRBS7	
HBR2	D24.3	NA/150 ps	300	CP2520	
HBR3	D24.3	60ps/150 ps	300	TPS4	HBR3 TP1 test 20-80 target is 40ps

Table 4-3: HBR3 TP3_CTLE Jitter Component Settings^a

	Frequency (SJ) (MHz)	TJ (JTHBR3rx) (mUI)	ISI ^b (mUI)	RJ _{RMS} (mUl)	Approximate SJ _{SWEEP} (mUI)	SJ _{FIXED} at 297MHz ^c (mUI)	Crosstalk ^d (mUl)
ſ	2	620	240	13	1013	130	20
ſ	10				137		
ſ	20				109		
ľ	100				100		

Table 4-1: BER Measurement Test Parameters					
Jitter Frequency (MHz)	Number of Bits	Maximum Number of Allowable Bit Errors	Bit Rate	Observation Time (Seconds) ^a	Data Rate Offset
2	10 ¹²	1000	HBR3	123	0
			HBR2	185	
			HBR	370	
			RBR	620	
10	10 ¹¹	100	HBR3	13	+350ppm
			HBR2	19	
			HBR	37	
			RBR	62	
20	10 ¹¹	100	HBR3	13	0
			HBR2	19	
			HBR	37	
			RBR	62	
100	1011	100	HBR3	13	0
			HBR2	19	
			HBR	37	

Automated testing performed using DP14-SINK-BSX And Providing Compliance Report

DP1.4 HBR3 PHY CTS Sink Test

DisplayPort Sink Test 1.4

Easy to use intuitive User Interface Same tools and results as GRL Lab for VESA Logo

VBUS and VCONN Verification

Test Steps

- 1. Use attached test configuration.
- 2. Apply 1W load to Vconn and apply load to VBUS.
- 3. Verify that Voltage value meets USB Type-C Specification limits.

Pass/Fail1 VBUS = 4.75V to 5.5V Pass/Fail2 Vconn = 4.75V to 5.5V

- 4. Enter DP alt mode.
- 5. Apply 1.5W load to Vconn and apply load to VBUS.
- 6. Verify that Voltage value meets DP Alt Mode on USB Type-C Standard requirements. Pass/Fail1 VBUS = 4.75V to 5.5V Pass/Fail2 Vconn = 2.7V to 5.5V
- 7. Exit DP alt mode.
- 8. Apply 1W load to Vconn and apply load to VBUS.
- 9. Verify that Voltage value meets USB Type-C Specification limits.

Pass/Fail1 VBUS = 4.75V to 5.5V Pass/Fail2 Vconn = 4.75V to 5.5V

GRL DisplayPort Test Solutions

- GRL-USB-PD-C2 USB Type-C[™] and USB Power Delivery Compliance Tester & Analyzer
 - PHY Test Automation for DP-C, TBT3, USB Type-C
 - USB PD Tests for DP-C Compliance (Chap 10 & 11)
 - USB PD 3.0/2.0 and Quick Charge 4
 - ... and much more
- Source Tx PHY Test Automation for Multi-vendor Oscilloscope. (GRL-DP14-SOURCE)
 - DP source spectral and pre-emphasis level testing.
 - Automatically acquire/analyze waveform for the testing.
- Sink PHY Test Automation for the Tektronix BERTScope (GRL-DP14-SINK)
 - Automatically calibrates BERT and Scope to create stressed eye for Sink Jitter Tolerance testing
 - 1.4 Draft and 1.2 CTS

slect Tests 🧳 🖉 📥 🔘 🗔	🔹 + 🖕 + 🗐	💽 🔼
→ ● ← Dasp/pet Site Tests → ⊗ ← Dasp/pet Site Caloutes → ⊗ ← Dasp/pet Site Site Site Site Site Site Site Si		°

GRL Convenient Locations

4 DisplayPort ATCs, Shanghai is new test Lab of DPATC

Thank You

GRL Japan:

Minoru Yokoyama, Director of Sales

myokoyama@graniteriverlabs.com

GRL Silicon Valley:

Quintin Anderson, Co-Founder & COO

<u>qanderson@graniteriverlabs.com</u>

GRL Taiwan:

How Wu, Director of Sales

- <u>hwu@graniteriverlabs.com</u>
- **(**02)2657-2199

GRL China:

Evan Sun, VP & GM

esun@graniteriverlabs.com

