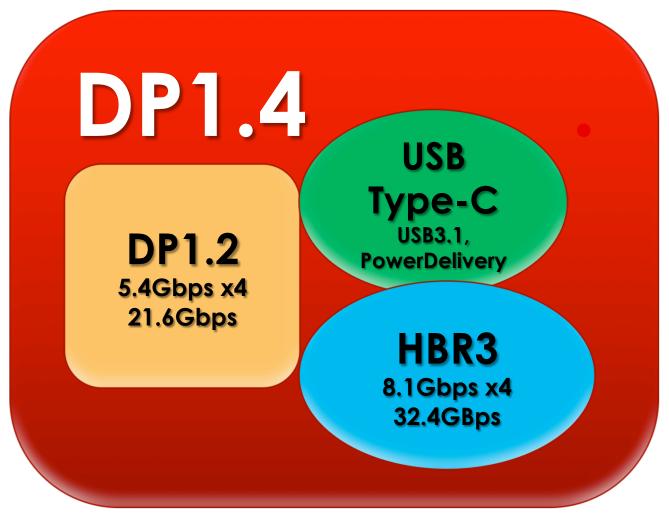




# DisplayPort コンプライアンス プログラム 2017/6/20

グラナイトリバーラボ・ジャパン株式会社 エンジニアリング・マネージャ 永田 学




### アジェンダ

- DP1.2 コンプライアンステストの概要
- DP Over USB Type-C (Alt Mode) 認証プログラム概要
- DP 1.4 初期認証プログラム概要
- Alt Mode & 1.4 Test Considerations & Lessons Learned
- GRLのDisplayPortへの取り組み





# DisplayPort1.4の技術







### DP1.2 コンプライアンステスト概要

- テストプランはデバイスのタイプ、サポート機能に依存
- DP 1.2 主要テスト項目
  - 1.2 エレクトリカル・テスト
    - メインリンクPHY 全てのデータ・レート(RBR/HBR/HBR2)
    - AUX PHY
  - 1.2 リンク・レイヤ
  - EDID
  - インターオペラビリティ; ソース、シンク、ケーブル、アダプタ
- オプションサポート機能:
  - マルチストリーム(MST); リンク・レイヤ、インターオペラビリティ
  - DP ++
    - デュアル・モード・アイ・ダイアグラム・テスト





# DisplayPort 1.2 コンプライアンステストの要求

|                                                  | Applicable Reference Document and Section |             |             |                |                             |
|--------------------------------------------------|-------------------------------------------|-------------|-------------|----------------|-----------------------------|
| Device Type (Reference Section in this document) | PHY<br>CTS                                | Link<br>CTS | EDID<br>CTS | Interop<br>CTS | Other                       |
| 3.3 - Source                                     | 3, 8                                      | 4           | 3           | 3              |                             |
| 3.4 - Sink                                       | 4, 8                                      | 5           | 4           | 3              |                             |
| 3.5 - Repeater                                   | 3, 4, 8                                   | 6           |             | 3              |                             |
| 3.6 - Legacy-to-DisplayPort<br>Converter         | 3, 8                                      | 6           |             | 3              |                             |
| 3.7 - DisplayPort-to-Legacy<br>Converter         | 4, 8                                      | 6           |             | 3              |                             |
| 3.8 - Replicator                                 | 3, 4, 8                                   | 6           |             | 3              |                             |
| 3.9 - Output Switch                              | 3, 4, 8                                   | 6           |             | 3              | 7)                          |
| 3.10 - Input Switch                              | 3, 4, 8                                   | 6           |             | 3              |                             |
| 3.11 - Composite Sink                            | 3, 4, 8                                   | 6           |             | 3              | 2                           |
| 3.12 – Passive Cable                             | 5                                         |             |             |                |                             |
| 3.13 – Active Cable                              | 9                                         |             |             |                |                             |
| 3.14 – Dual-mode Cable Adaptor                   |                                           |             |             | ,              | Dual-mode Cable Adaptor CTS |
| 3.15 – Hybrid Device                             | 6                                         | 5           | 9           | 3              |                             |



#### テストラボで認証テスト時に必要な情報

- レーン数、ポート数、コネクタ形状
- 最高データレート (HBR2?、HBR3?)
- サポート機能(オーディオ、MST、DP++)
- VESA capability formへの記載(ATCよりフォームを提供)
- 自動PHYテスト機能をサポートしているか?
  - ソース機器: 主要測定器メーカのツールをAUXチャンネル経由で使用可能か
  - シンク機器; ジッタ・トレランステストでDPCDレジスタの制御(読み書き、リセット)が可能か
  - DUTが自動テスト機能をサポートしていない場合、追加作業/費用が発生et
- eDP ソース、シンクはテストのため制御を行う外部ソフトウェアが必要





#### DP ロゴ認証プロセス



- ATCは円滑に認証テストを行えるよう以下のサポート
  - コンプライアンスの要求事項の説明
  - テスト計画; デバイスに合わせ、ローコスト、短時間なコンプライアンステスト計画を立案
  - 問題が発生した場合に、トラブルシュート、デバッグを支援
  - CTSに逸脱した項目、例外処理へのサポート

#### The Process

Read the documents

Test your product

Fill out the test report

Send the report and logs to Compliance Program Manager <a href="mailto:dpcpm@vtm-inc.com">dpcpm@vtm-inc.com</a>, approval by email

Contact VESA to:

Complete license agreement if you have not already

Provide the information needed to get your product listed on displayport.org





# DP Alt Mode on USB Type-Cテスト

## 概要



- 1. DP コンプライアンステスト: サポートされている機能をすべて実施 Ex. DUTがピンアサインD (2x2 DP & USB5G)をサポートしていた場合、クロストークを入れたPHYテスト
- 2. USB コンプライアンス
  - USB 2.0 エレクトリカルテスト (ハイスピードのみ)
  - USB 3.1 エレクトリカルテスト
  - USB リンクレイヤテスト
  - USB ゴールドツリーテスト
  - USB ビルボード(シンクのみ)
- 3. USB Power Delivery Test
  - CC エレクトリカルテスト, CC プロトコルテスト, パワーテスト, VBUS及びVCONN検証
- **4.** アダプタ インターオペラビリティテスト:
  - Type C ドングル; DP/HDMI/VGA シンク/ソース





#### DP1.4早期認証プログラム



#### ■ ソース -

- HBR2及び、より低いデータレートの現在行っているDP 1.2 CTSを使用
- HBR3メインリンクPHYコンプライアンス- 最新のPHYサブグループの提案を反映
- HBR3でリンクトレーニングとファンクション検証
  - リファレンスシンク: RealTek, Mstar

#### ■ シンク -

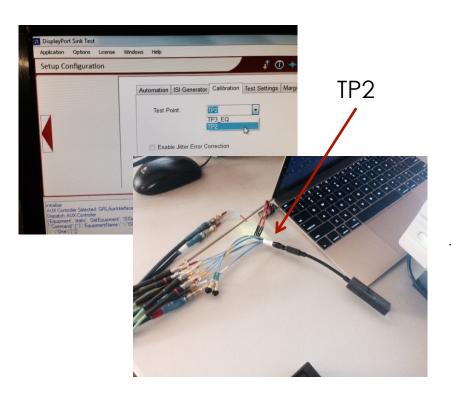
- HBR2及び、より低いデータレートの現在行っているDP 1.2 CTSを使用
- HBR3 シンクジッタトレランス
- HBR3でリンクトレーニングとファンクション試験
  - リファレンスソース: AMD RX480
- シンボルエラーカウンタレジスタがAUXチャンネル経由で確認できること (エラーカウンタの読み出しに特殊なソフトウェアなどを使用しない)

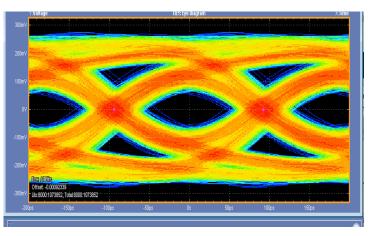




# DP1.4早期認証プログラム-リンク、インターオペラビリティテスト




- 現時点では自動リンクトレーニングツールは無い
- リファレンスソース、リファレンスシンクを使用し、手動でテストを実施
  - リンクトレーニングのテスト手法
    - ・AUXチャンネルモニタを介してリファレンスソースとシンクを接続
    - ・HBR3においてサポートされている解像度に対しリンクトレーニングのテスト
    - •1stフェイズーD10.2 クロックレート
    - 2<sup>nd</sup>フェイズーTPS4、CH EQ、シンボルロック、Laneアライメント
    - 720Mp/s以上のすべての解像度におけるピクセルレートとリンクトレーニングのチェック
    - ・フェイズ1、フェイズ2のリンクトレーニングで失敗した際にHBR2になることを確認
    - サポートされている解像度でのスクリーンチェック
    - 特性の異なるケーブルを使用しテストを実施するEx チャンネル数やケーブルの長さなど


Source: VESA DP 1.4 Early Certification Test Program, 9/21/2016



#### HBR3 シンクテスト

- HBR3 シンクセットアップ
  - DP Over Type-C: TP2、TP3\_EQのキャリブレーション、Alt modeの初期化、クロストーク、マックスプロバイダーパワーストレステスト。
  - GRLの試験セットアップについてはGRL-Tektronix MOIを参照

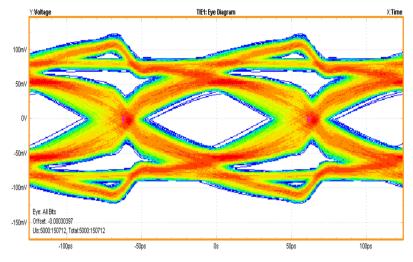




TP2 = [TP3\_Eq] - [HBR2 Cable Model] - [EQ]






## HBR3 シンク キャリブレーション



#### **TP3\_EQ ISI Calibration**

# 

#### **Eye Height Calibration with DFE**







# Alt Mode & 1.4 Test Considerations & Lessons Learned



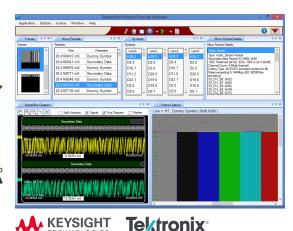
- Alt mode:
  - USB Power Deliveryスペックを満足していない(BMC Eye, プロトコル)
- HBR3 ソース
  - CTLE: Eye Height、ジッタスペック(75mV and 500mUI) を満たさない
- ■ソース全般
  - AUXでDCエラー
  - IRQ受信時のリンクエラー
- HBR3 シンク
  - クロストーク 実際の信号か? 1/4クロック信号か?
- シンク全般
  - AUX経由のエラーカウンタチェックの未搭載/動作不良





## GRL = The DisplayPort Leader

- DP CTSの作成に貢献
  - 2010年よりVESAに参画
  - Type-C/Alt mode認証プログラムの開発に貢献
  - DP1.4早期認証プログラムで主導的役割を果たす
    - DP1.4 テストの定義
    - DP1.4採用の製品テストを実施
  - Mike Engbretson, GRLチーフエンジニア -
    - DP 1.2 認証試験のエディター
    - VESA DP試験タスクグループの元チーフ
- DP主要プレーヤーと緊密に連携
  - GPU: Intel, AMD, NVidia
  - シンク/リピーター IC: NXP, TI, MStar, RealTek, Megachips
  - FPGA/DSP: Bitec, XILINX, Altera
  - 最終製品: Dell, HP, Acer, ASUS, Lenovo, LG, Microsoft, Belkin






## GRL DisplayPort テストソリューション



- Main Link & AUX Scope Protocol Decode (GRL-DP-DEC/GRL-DPAUX-DEC)
  - MSTを含むメインリンク及びAUXの詳細な情報を提供
  - PHYテストに使用されているのと同じオシロスコープでプロトコル解析とデバック (Keysight or Tektronix)
  - PHY、パケット、映像間の相関をもって表示、解析、デバック
  - アクティブビデオ、セカンダリデータパケット、オーディオデータパケットを見やすくテーブル表示
- Sink PHY Test Automation for the Tektronix BERTScope (GRL-DP-SINK)
  - シンク ジッタトレランス試験で使用するEyeのキャリブレーション
  - DP1.2版は販売中, DP1.4版は2017年Q2を予定



















### GRL 事業拠点 DisplayPort ATC 4カ所









## ありがとうございました

GRL Japan:

永田 学, エンジニアリングマネジャー

nagata@graniteriverlabs.com

GRL Japanへのコンタクトは

URL:http://graniteriverlabs.co.jp/

横山 稔, セールスディレクター

myokoyama@graniteriverlabs.com



