eDP[™]

Embedded DisplayPort[™]

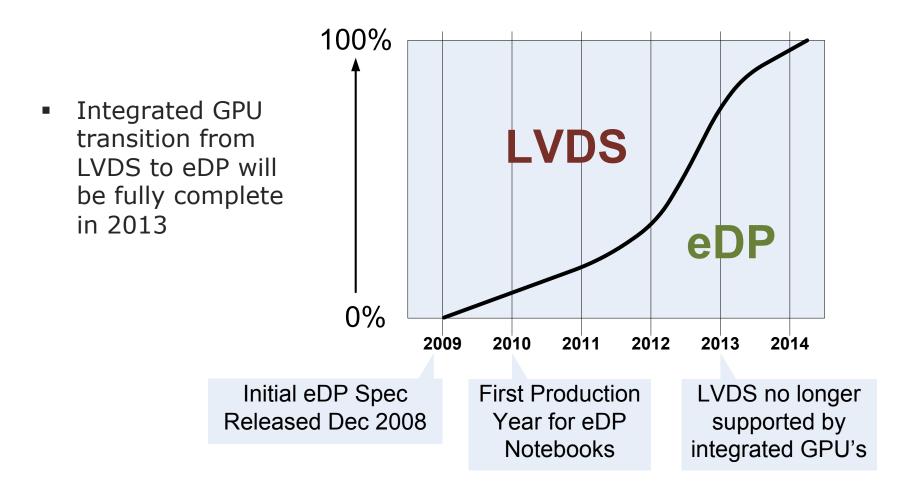
The New Generation Digital Display Interface for Embedded Applications

DisplayPort Developer Conference | December 6, 2010 | Westin Taipei

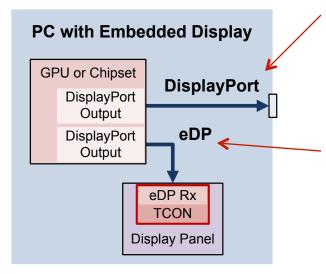
Craig Wiley Sr. Director of Marketing of Parade Technologies, Inc. VESA Board of Directors Vice-chair, Notebook Task Group Chair

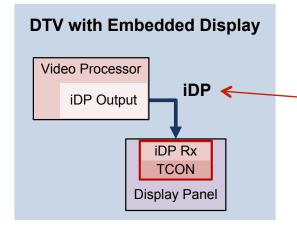
eDP Topics

- Overview of eDP
- eDP Compared to DisplayPort, iDP, and LVDS
- eDP Features and Evolution of the Standard


Quick Summary of eDP

- Embedded DisplayPort (eDP) was developed to be used specifically in embedded display applications
 - Notebook, Netbook, and Notepad PCs
 - All-in-One PCs
- eDP is Based on the VESA DisplayPort Standard
 - Same electrical interface, and can share the same video port on the GPU
 - Same basic digital protocol, but with some differences added for eDP
- In PC applications, eDP will replace LVDS over the next few years
 - eDP will add new system capabilities while reducing system cost, power, and size


Embedded PC Displays Will Transition from LVDS to eDP over the Next Few Years



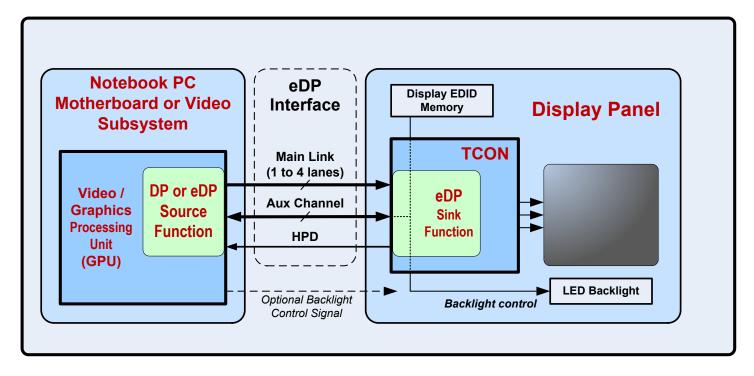
How does eDP compare to DisplayPort or iDP?

DisplayPort™

- External display Interface
- Needs to interoperate with any external DP Display
- Many optional features tailored for external display flexibility: HDCP, audio, dual-mode adapters, multi-stream, etc

Embedded DisplayPort (eDP™)

- Internal display interface for PC products
- Uses same GPU video port as external DisplayPort connections
- Examples where eDP would be utilized: notebooks, netbooks, notepads, all-in-one systems
- Based on DisplayPort standard with some modifications Protocol and features optimized for internal display use
- Only needs to interoperate with dedicated system display


Internal DisplayPort (iDP™)

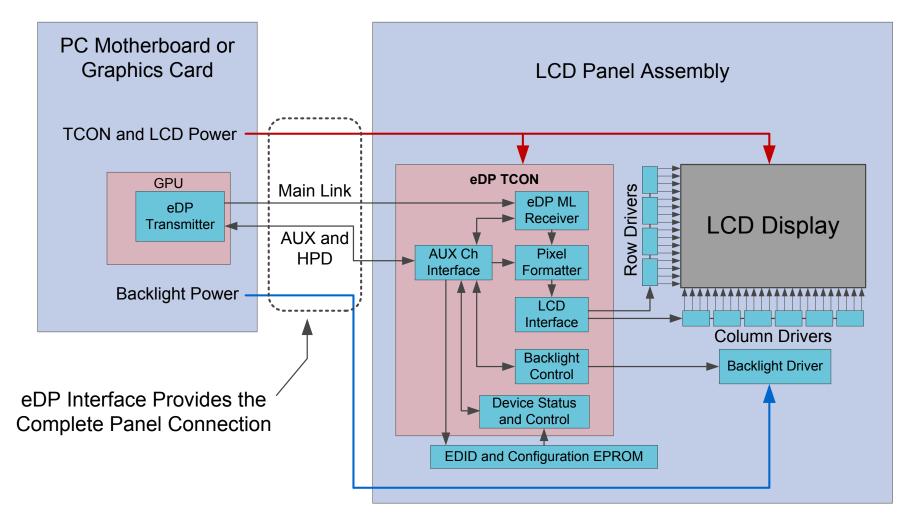
- Internal Interface developed for DTV and display system products
- Not directly compatible with DisplayPort Standard
- Unique iDP interface and protocol Optimized for simplicity and extensibility (more data pairs) Enables very high resolutions and refresh rates Not applicable for external ports

eDP Utilizes the DisplayPort GPU Interface

- No dedicated video port needed for embedded displays (unlike LVDS)
- Main Link lane count of interface can be scaled to fit display data rate requirements
- AUX Channel and HPD serve as a side-band channel for display configuration and control

eDP vs. DisplayPort

Compliance and Interconnect


	DisplayPort	eDP		
Overall protocol and interconnect	Set by standards, consistency required for external display interoperability	Flexible, depends on the requirement of the system and dedicated display		
Protocol Requirements	Covered by DisplayPort Standard and Compliance Test Specifications	The eDP Standard provides recommended guidelines, but system integrators may modify implementation to fit system requirements. Some specific requirements may be set by the GPU vendor.		
Compliance Testing	Covered by Compliance Standards	Interface requirement established by system integrator and/or GPU vendor.		
Source-Sink Interoperability	Covered by the DisplayPort Standard and other VESA documents	System integrator and GPU vendor determine eDP Source and Sink requirements.		
Interface Connector	Standard or mini-DP connector	30 or 40 pin panel connection depending on system configuration.		
Interface Cable	Standard DisplayPort Cable	Different types of cables can be used. Common cable types include twisted pair and micro coax. Like the connector, cable choice is determined by system integrator based on system design requirements and Source and Sink ability.		

eDP Provides All Panel Connections in One Plug

Includes all power, data and control signals

Common Pin Out for eDP Panel Connector (One or Two lanes, with LED backlight driver on panel)

			Optional, depending on
Pin	Signal Name	Description	display resolution
1	NC - RESERVED	RESERVED for LCD manufacturer's use	
2	H_GND	High Speed Ground	1
3	Lane1_N	Complement Signal Link Lane 1	
4	Lane1_P	True Signal Link Lane 1	
5	H_GND	High Speed Ground	
6	Lane0_N	Complement Signal Link Lane 0	
7	Lane0_P	True Signal Link Lane 0	
8	H_GND	High Speed Ground	
9	AUX_CH_P	True Signal Auxiliary Channel]
10	AUX_CH_N	Complement Signal Auxiliary Channel	
11	H_GND	High Speed Ground]
12	LCD_VCC	LCD logic and driver power	
13	LCD_VCC	LCD logic and driver power	
14	LCD_Self_Test or NC	LCD Panel Self Test Enable (Optional)]
15	LCD_GND	LCD logic and driver ground]
16	LCD_GND	LCD logic and driver ground	
17	HPD	HPD signal pin]
18	BL_GND	Backlight ground	
19	BL_GND	Backlight ground]
20	BL_GND	Backlight ground]
21	BL_GND	Backlight ground]
22	BL_ENABLE or NC	Backlight On/Off (Optional)]
23	BL_PWM_DIM or NC	System PWM signal input for dimming (optional)]
24	NC - Reserved	Reserved for LCD manufacturer's use]
25	NC - Reserved	Reserved for LCD manufacturer's use]
26	BL_PWR	Backlight power]
27	BL_PWR	Backlight power	
28	BL_PWR	Backlight power	
29	BL_PWR	Backlight power]
30	NC - RESERVED	RESERVED for LCD manufacturer's use]

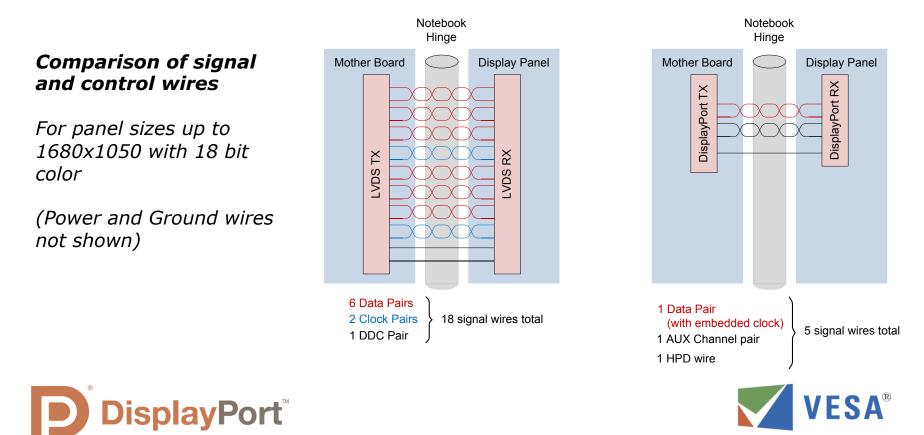
Table 5-3 in eDP v1.2

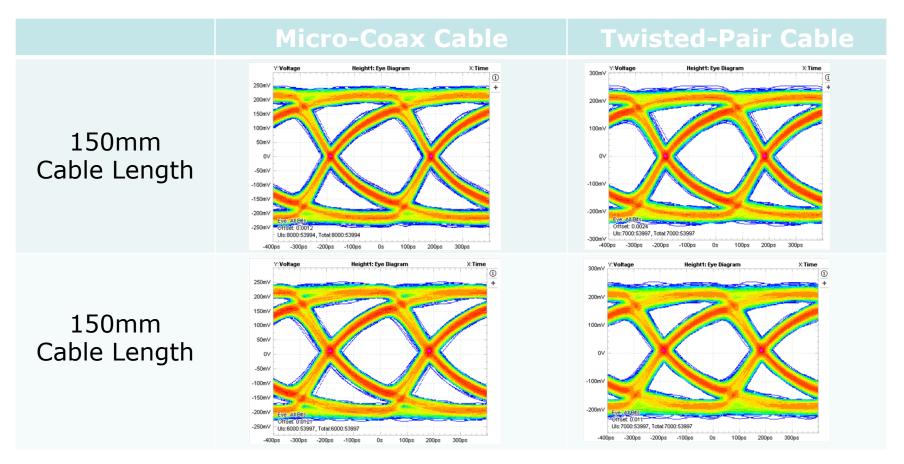
Ontional depending on

Data Carried in eDP Main Link

- Video pixel data
- Video timing information
 - Pixel Clock, Hsync, Vsync
- Video format information
 - Bits-per-pixel, color space
- Video data error correction
- Audio data (optional)

Data Carried in eDP AUX Channel


- EDID information from Display (Display Format information)
- Link Training protocol
 - Provides a robust main link connection
- Display Control (eDP 1.2)
 - Backlight dimming and frequency control
 - Dynamic backlight and color enhancement control
 - Dithering and FRC (Frame Rate Control)
- Power management
- Error checking of main link data (CRC protocol)


eDP compared to LVDS

- PCB trace and data signal wire count is reduced (smaller cable)
- Signal type more compatible with new chip processes
- eDP can use a DisplayPort GPU interface, no separate video port needed
- Overall system power is reduced, increasing battery life
- Lower EMI which means less system shielding requirement
- Enables new panel control capabilities

eDP Signal Integrity over Display Interconnect Cable

Measurements at eDP TCON input (TP3) using 400mV swing, 0 dB pre-emphasis by Source

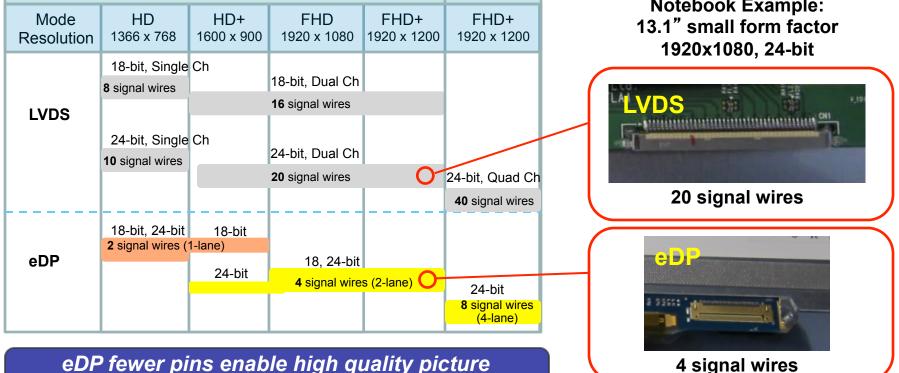
eDP can use the same display cable as LVDS without signal loss or data errors, while using less conductors

eDP compared to LVDS

	eDP	LVDS
No. of data & clock pairs	1 to 4 data pairs, no separate clock pairs	Higher count of data pairs Separate clock pair(s) needed
Example: 1080p@60 Hz, 24bpp:	2 data pairs needed	8 data pairs needed (8 data, 2 clock) (dual channel)
Bit rate, per pair	1.6 , 2.7, or 5.4 Gbit/sec (fixed clock rate) Future extensible	945 Mbit/sec (at max 135Mhz pixel clock rate)
Total raw capacity	1.6 to 21.6 Gbit/sec	7.56 Gbit/sec (for dual channel)
Clock	Embedded	Separate clock pair per channel
Transport Type	Packetized for display, audio and other transport data; Extensible format	Limited to uncompressed pixel raster scan only
Bi-Directional Data channel	1 Mbps or 720 Mbps (AUX or Fast AUX)	100 kHz (DDC channel)
Channel Coding	ANSI 8B/10B	Serialized at 7x pixel clock rate
Content protection	eDP Display Authentication HDCP Optional	None
Signal Characteristics	AC -coupled, typically 600mV pk-pk swing	DC coupled, 700 mV pk-pk signal at VDD/ 2 offset. DDC channel is DC-coupled referenced to VDD with a 2V swing

eDP has Fewer Signal Wires than LVDS

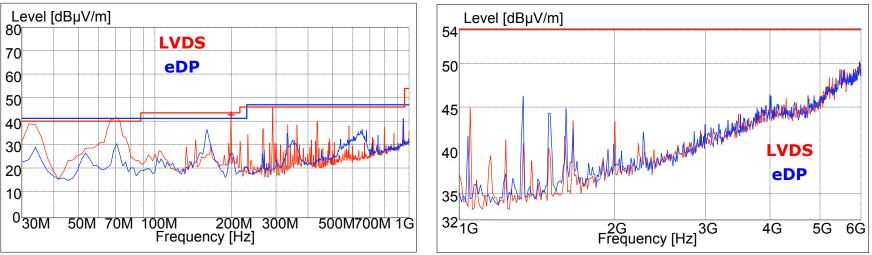
eDP = fewer/more useful pins


Frame Rate: 60Hz

- -2.5X to >4X more efficient than LVDS
- Enables slimmer cable than LVDS

in small form factor

Notebook Example: 13.1" small form factor 1920x1080, 24-bit


120Hz

VESA[®]

eDP vs. LVDS 3m EMI Scans

- Comparison in native resolution 1366 x 768, 60-Hz, 85.5MHz pixel clock
- eDP 2.7Gbps data link rate.
- Note: LVDS and eDP connect differently in chassis, may result in different EMI profiles.

- LVDS shows higher EMI profile up to 1GHz.
- eDP margins very good, 4 dB+ <1 GHz, and 8 dB+ >1 GHz.
- EMI doesn't align to pixel clock harmonics.
- LVDS may have more cable radiation; higher LVDS EMI may be due to longer and tighter routing to MB.

2.7Gbps data-rate fundamental or harmonics not detected (not expected).

85.5MHz pixel clock fundamental and harmonics not present.

No eDP failures measured in this configuration, SSC-disabled (BIOS).

Evolution of the eDP Specification

eDP Specification versions and new features introduced

eDP Version	Primary New Features	VESA Standard Release	First System Model Year	
eDP v1.0	DP v1.0 Initial eDP Standard December 2008		2009 (system prototypes only)	
eDP v1.1	Minor changes and clarifications	October 2009	2010 (systems now in production)	
eDP v1.2	Added display control through AUX channel	May 2010	2011	
eDP v1.3	DP v1.3 Adds Panel Self- Refresh (Ex		2H 2012 (forecast)	
®				

eDP vs. DisplayPort

Key Protocol Differences

	DisplayPort	eDP		
Content Protection	HDCP is the only content protection protocol used; used by many systems	HDCP – optional, but rarely used. Other simplified options available for eDP; Most common is "ASSR" which stands for "Alternate Scrambler Seed Reset". (saves power and complexity)		
Interface Link Training at Power-on	Full link training protocol required	System can be configured to use "fast link training" (simplified protocol) or "no link training" (no training protocol, designed for fastest display re-enable time)		
640 x 480 Safe Mode	Required	Not required; GPU always supports native display resolution.		
Special Power Saving Modes	Only Standby and Power Down	Display timing adjusted to reduce power, depending on display image motion.		
Backlight and Other Display Control	MCCS Only	Special AUX Channel Registers for eDP use (introduced with eDP v1.2)		

eDP Display Control Through AUX Channel Capability Introduced with eDP 1.2

DPCD Address Range (Hexidecimal)	Application Category
000-0FF	Receiver Capabilily
100-1FF	Link Configuration
200-217	Link/Sink Status
218-2FF	Automatic Testing (Optional)
300-3FF	Source Device-Specific
400-4FF	Sink Device-Specific
500-5FF	Branch Device-Specific
600-6FF	Sink Control
700-7FF	Reserved for eDP
800-FFF	Reserved for future use

eDP v1.2 Sink Control Capability

Capability Reported Through DPCD Field 700h Register Read

Capability Supported, Read Through AUX Channel	Notes
eDP v1.2 Support Capability	First capability read by Source
General Control Capab	ility
Supports Backlight Adjustment through AUX	
Supports Backlight Enable through AUX	
Supports Backlight Enable through connector pin	Optional in eDP v1.2
Supports Backlight Enable through connector pin	Optional in eDP v1.2
Supports FRC Capability, controlled through AUX Supports Color Engine Capability, controlled through AUX	
Supports power state control through AUX	

eDP v1.2 Sink Control Capability (continued)

Capability Reported Through DPCD Field 700h Register Read

Capability Supported, Read Through AUX Channel	Notes
Backlight Adjustment Capab	oility
Supports Brightness control through connector PWM pin	Optional in eDP v1.2
Supports Brightness control through AUX	
Supports combined AUX-PWM brightness control	
Supports Backlight freq control from PWM pin	
Supports Backlight freq control through AUX	
Supports dynamic brightness control, controlled through AUX	
Supports Brightness control through the connector PWM pin	

eDP v1.2 Sink Control Capability (continued)

Control Available Through DPCD Field 700h Register Write

Control Supported Through the AUX Channel	Notes		
Backlight Enable (uses DPCD register 001Ah)	Removes an interface conductor		
Black Video Enable	Also automatically enabled with detection of invalid video		
FRC Enable			
Color Engine Enable			
Dynamic Backlight Mode Enable Min and max brightness for dynamic backlight mode			
Backlight brightness control mode			
Backlight brightness set (up to 16 bit resolution)	Removes an interface conductor		
Backlight frequency control mode			
Backlight frequency set			
Self-Test Enable (uses DPCD register 001Ah)	Removes an interface conductor		

Summary of eDP v1.2 Backlight Control Settings

	•	. 🗡	•	•		. 🗡	•	•	•	
TCON BACKLIGHT ADJ CAPABLE	BACKLIGHT PWM CONNECTOR PIN	BACKLIGHT AUX SET CAPABLE	BACKLIGHT (AUX)*(PWM) CAPABLE	BRIGHTNESS CONTROL MODE	<u>Backlight Brightness</u> <u>Control Mode</u>	PWM PIN FREQ PASS-THRU CAPABILE	PWM PIN FREQ PASS-THRU ENABLE	AUX SET PWM FREQ CAPABILE	AUX SET PWM FREQ ENABLE	Capability Registers in eDP Panel (read only) Configuration Registers in eDP Panel Backlight Frequency Control Mode
0	0	0	0	DC		0	DC	0	DC	To be specified by panel vendor
					Set by PWM duty cycle	DC	0	DC	0	Use panel pre-set backlight frequency
1	1	DC	DC	00	established by duty cycle eDP connector pin, if	DC	DC	1	1	Backlight Frequency set thru AUX channel
	T	DC	DC	00	available	1	1	DC	0	Set by PWM frequency into BL_PWM_DIM pin on eDP connector
1				01	Use pre-set value of panel	DC	DC	DC	0	Use panel pre-set backlight frequency
1	DC	DC	DC	01		DC	DC	1	1	Backlight Frequency set thru AUX channel
1	DC	1	DC	10	Backlight Brightness set	DC	DC	DC	0	Use panel pre-set backlight frequency
	DC			10	thru AUX channel	DC	DC	1	1	Backlight Frequency set thru AUX channel
					Set by product of PWM	DC	DC	DC	0	Use panel pre-set backlight frequency
1	1	1	1	11	value on connector pin and AUX channel value	DC	DC	1	1	Backlight Frequency set thru AUX channel

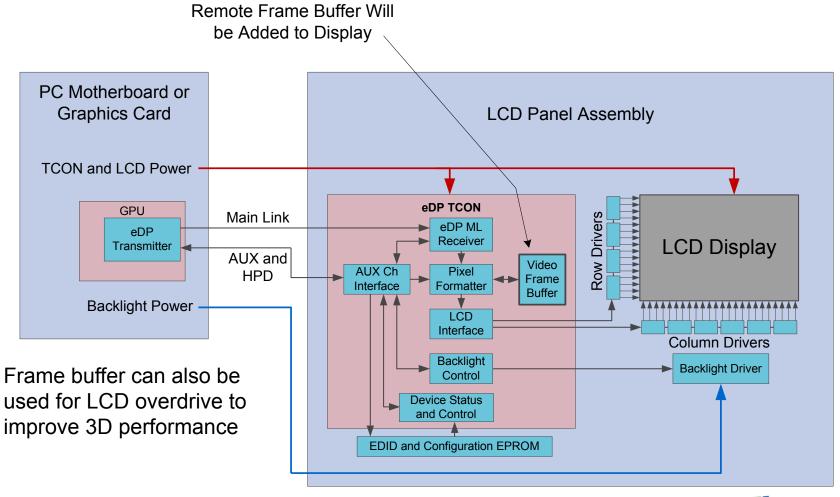
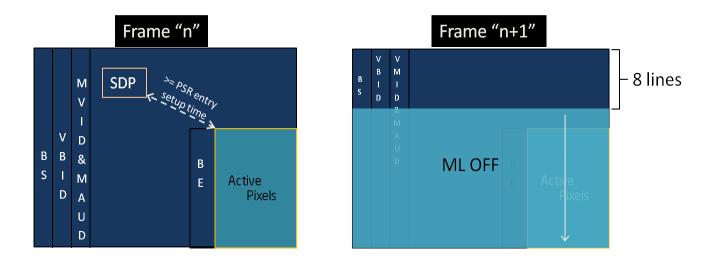

DC = Don't Care

Table 3-19 from eDP v1.2, simplified

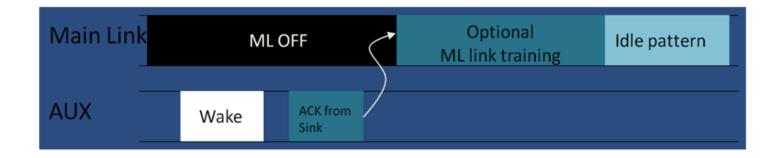
Main New Feature for eDP 1.3: Panel Self-refresh

Description of Panel Self-refresh


- Frame Buffer in TCON can maintain display image without receiving video data from GPU.
- For a still video image, this allows the GPU to enter a low power state and the eDP main link to turn off.
- Allowing the GPU to power down between display updates will save significant power and extend battery life.
- Except when watching a movie or playing a game, there are many times when the video does not change for multiple frames.

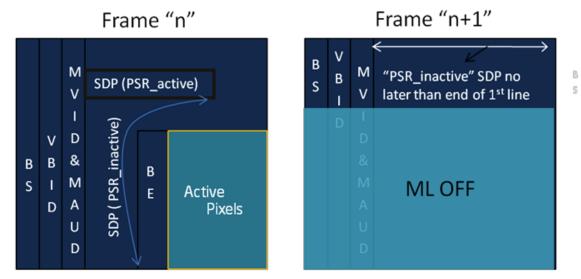
How Panel Enters Self-refresh Mode

- GPU determines when display will not be changing and sends Self-refresh Entry command to display using SDP (secondary data packet); TCON then enables frame buffer, captures video frame, and then GPU and Main Link turn off.
- Display continues to Self-refresh from TCON frame buffer, using asynchronous timing for display.



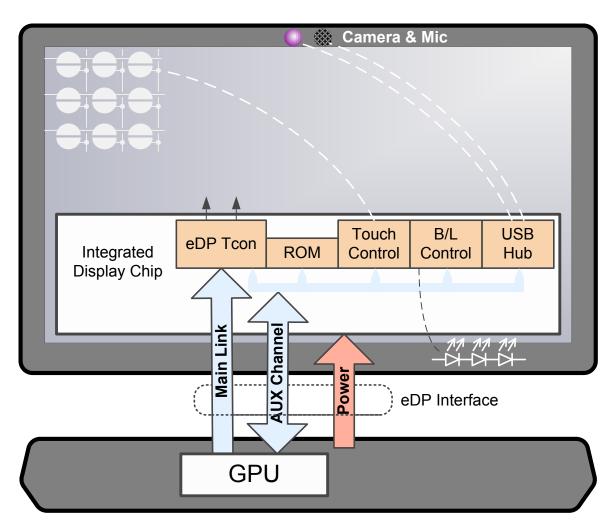
How of Panel Exits Self-refresh Mode

- When GPU detects new image data (for example from a keystroke or mouse movement), GPU wakes up TCON eDP input and starts sending the new display image data.
- Display then switches from the Frame Buffer to eDP input data, and Genlocks display timing to GPU.



Single Frame Update

- While in Self Refresh Mode, the GPU can make single frame updates to the TCON frame buffer; the display maintains asynchronous timing during the process.
- This can be used to turn on or turn off a blinking display cursor, for example.
- A burst of single frame updates can also be used, for example to fade-in and fade-out the blinking cursor.



The Future of eDP

Helping to Enable Further Display Integration

- eDP provides a unified data & control path to the display system
- The packetized structure of DisplayPort enables continued extension of data types and function support
- eDP will help enable highly integrated display platform chips and reduce required interconnect across the notebook display hinge

