Understanding Multi-Stream

VESADisplayPort Workshop, Taipei May 2013

Bob Crepps
Technical Marketing Engineer, VTM Inc.
Compliance Program Manager, VESA

Lexus Lee
Compliance Program Manager, Allion Labs
Sales Manager, Allion Labs
Multi-Stream Basics

- MST Extension
- MTP (Multi-Stream Transport Packet)
- VC (Virtual Channel) Payload
- Video Stream Symbol Mapping within VCP
- Addition/Deletion of Streams
- MST Topology Management
MST (Multi-Stream Transport) Extension

- De-coupling of Virtual Channels between stream sources and stream sinks from physical channels

NOTE: Widths of the arrows imply stream bandwidths
MST Extension (continued)

- Micro-Packet-based, time-division multiplexing to enable transport of multiple AV streams over a single physical connection
 - In theory, up to 63 AV streams transportable concurrently
 - Not “one stream per lane”
 - No synchronicity assumed among streams transported over a single physical channel
 - E.g., Streams may have different frame rates (24Hz / 25Hz /50Hz/ 59.94Hz /60Hz / 72Hz /75Hz…)
 - Addition/deletion of a stream without affecting the remaining streams
 - Packetizing overhead as small as 1.6%
MTP (Multi-Stream Transport Packet)

- The unit of Micro-Packet in MST Mode
 - 64 time slots long
 - 1st time slot of MTP used as MTP Header
 - Remaining 63 time slots allocated to carry streams
 - Carries 00’s when unallocated for a stream transport
 - 1024 MTP’s constitute a “Link Frame”
 - 1 Link frame = 2^{16} time slots long

![Diagram of MTP and Link Frame]
VC (Virtual Channel) Payload

- VC Payload = Time slots within MTP (excluding MTP Header) allocated for transporting a stream
 - One AV stream per VC Payload
- Example: 1080p60Hz, 30bpp over 4-lane, 5.4Gbps/lane Main Link
 - Pixel bandwidth = 148.5Mpixels/sec * (30/8) bytes/pixel = 556.875Mbytes/sec
 - 1 time slot per MTP = 540Mbytes/sec/lane * 4 lanes / 64 time slots per MTP
 = 33.75Mbytes/sec/time slot
 - VC Payload time slot count for this stream over this Main Link (VCP1)
 = CEIL (556.875 / 33.75) = 17 time slots
Video Stream Symbol Mapping within VCP

- Active video pixel data framed with BE and BS Control Symbols
- When no pixel to transport (e.g., video blanking period), insert SF (Stream Fill) control symbols
- MSA (Main Stream Attributes) Packet to replace SF symbols once per vertical blanking interval to describe video stream attributes

NOTE: Stream symbols carried in a VCP form the above when concatenated across MTP's
Addition/Deletion of Streams

- One stream at a time
 - Time slot allocation change agreed on between TX and RX via sideband communication
 - Addition/deletion of a VC Payload over Main Link synchronized between TX and RX by inserting ACT (Allocation Change Trigger) symbol in four consecutive MTP Headers preceding the change

NOTE: Four MTP Headers preceding the allocation change carry ACT symbol sequence
GUID

Global Unique Identifier

- Topology Management Layer identifies each MST device in a branching unit
- MST device may perform more than one function i.e. USB hub.
- GUID identifies the physical unit that contains multiple functions
 - Source assigns 16-byte GUID unless the device already has one
DP Audio Transport

- Available bandwidth supports 4Kx2K 60Hz progressive, YCbCr444 30bits per pixel and 2 streams of 192kHz, 22.2ch audio
- Audio transport without video supported
- Multi-Stream allows routing of multiple audio streams to multiple audio rendering devices
- Audio inter-channel synchronization across multiple audio rendering devices supported
 - Aligns real-time clock of each device in 100-ns precision via GTC (Global Time Code)
 - Audio stream source device to specify the presentation time of an audio frame in the audio stream packet
MST Topology Management

- **Node addressing through discovery procedure**
 - Topology Manager (typically a DP Source device) discovers the path to the other DP device
 - Plugging/unplugging of a device handled without resetting the address set of the entire link

- **Supports topology containing multiple DP Source and Sink devices**
 - Initial main focus: a single DP Source device driving multiple displays

![MST Topology Diagram]
Multistream Reference

Multi-Stream Use Case Example 1.0

1 Example MST Topology without Audio Stream Sink

This document covers how an MST DP Source device and a device containing MST Branching Unit are to interact to perform typical topology and payload bandwidth management functions in the following logical topology.

Figure 1-1: Logical Topology Covered in this Document
Understanding Multi-Stream

VESAPort Workshop, Taipei May 2013

Bob Crepps
Technical Marketing Engineer, VTM Inc.
Compliance Program Manager, VESA

Lexus Lee
Compliance Program Manager, Allion Labs
Sales Manager, Allion Labs
MST Compliance Test Introduction

- MST Compliance Test Introduction
 - Protocol Test
 - Source
 - Branch Sink or Hub
 - Multi-Stream Sink
 - Interoperability Test
 - Source
 - Branch Sink or Hub
 - Multi-Stream Sink
MST Compliance Test Introduction

- 5 Configurations for Protocol Test
 - Configuration A
 - Configuration B
 - Configuration C
 - Configuration D
 - Configuration E
MST Compliance Test Introduction

- Protocol Test
 - Configuration A

- Video
- Audio
- HBR2
- DPCD 1.2
- Payload Allocation
- GUID
- EDID
MST Compliance Test Introduction

- Protocol Test
 - Configuration B

PC

Branch Sink 0

Branch Sink 1

Position 0

Position 1

Position 2

Aux Monitor 0

Aux Monitor 1

TX Link0 RX

TX Link1 RX

✓ Video/Audio/HBR2/DPCD 1.2
✓ Payload Allocation/GUID/EDID
MST Compliance Test Introduction

- Protocol Test
 - Configuration C

Position 0
- PC
- TX Link0 RX
- Aux Monitor 0
- ✓ Video/Audio/HBR2/DPCD 1.2
- ✓ Payload Allocation/GUID/EDID

Position 1
- Branch Sink 0
- TX Link1 RX

Position 2
- Branch Sink 1

Position 3
- Branch Sink 2
- Aux Monitor 1
- TX Link2 RX

Position 3
- Aux Monitor 1
MST Compliance Test Introduction

- Protocol Test
 - Configuration D

Position 0
PC

Position 1
Branch Sink 0

Position 2
Branch Sink 1

Position 3
Branch Sink 2

Position 4
SST Sink

- Video/Audio/GUID
- HBR2/DPCD 1.2/EDID
- Payload Allocation
MST Compliance Test Introduction

- Protocol Test
 - Configuration E

Position 0

PC

Aux Monitor 0

- Video/Audio/GUID
- HBR2/DPCD 1.2/EDID
- Payload Allocation

Branch Sink 0

Branch Sink 1

Branch Sink 2

SST Sink
Interop Test Matrix

Branch Sink

<table>
<thead>
<tr>
<th>Pos 0</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos 1</td>
<td>DUT</td>
<td>DUT</td>
<td>DUT</td>
<td>DUT</td>
<td>BS0</td>
<td>BS0</td>
<td>BS0</td>
<td>BS0</td>
<td>BS0</td>
<td>BS0</td>
<td>BS0</td>
</tr>
<tr>
<td>Pos 2</td>
<td>BS0</td>
<td>BS0</td>
<td>BS0</td>
<td>BS0</td>
<td>DUT</td>
<td>DUT</td>
<td>DUT</td>
<td>DUT</td>
<td>BS1</td>
<td>BS1</td>
<td>BS1</td>
</tr>
<tr>
<td>Pos 3</td>
<td>BS1</td>
<td>BS1</td>
<td>BS1</td>
<td>BS1</td>
<td>BS1</td>
<td>BS1</td>
<td>DUT</td>
<td>DUT</td>
<td>BS2</td>
<td>BS2</td>
<td>BS2</td>
</tr>
<tr>
<td>Pos 4</td>
<td>BS2</td>
<td>BS2</td>
<td>BS2</td>
<td>BS2</td>
<td>BS2</td>
<td>BS2</td>
<td>BS2</td>
<td>DUT</td>
<td>DUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pos 5</td>
<td>SST</td>
</tr>
</tbody>
</table>
MST Compliance Test Introduction

Reference: DP 1.2a Standard

<table>
<thead>
<tr>
<th>DisplayPort Address</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000h</td>
<td>DPCD_REV: DPCD revision number</td>
</tr>
<tr>
<td></td>
<td>Bits 3:0 = Minor revision number</td>
</tr>
<tr>
<td></td>
<td>Bits 7:4 = Major revision number</td>
</tr>
<tr>
<td></td>
<td>10h for DPCD Rev.1.0</td>
</tr>
<tr>
<td></td>
<td>11h for DPCD Rev.1.1</td>
</tr>
<tr>
<td></td>
<td>12h for DPCD Rev 1.2</td>
</tr>
<tr>
<td></td>
<td>A DP device with uPacket RX with a DPCD Revision number of 1.2 and above must support GUID at DPCD Addresses 00030h ~ 0003Fh. Furthermore, a DP Sink device with DPCD Rev.1.2 with a stereo display capability support (as declared in EDID and Display ID) must support the handling of 3D Stereo inband signaling using Video_Stream_Configuration (VSC) Packet.</td>
</tr>
<tr>
<td></td>
<td>Note: The DPCD revision number does not necessarily match the DisplayPort version number.</td>
</tr>
<tr>
<td>00001h</td>
<td>MAX_LINK_RATE: Maximum link rate of Main Link lanes = Value x 0.27Gbps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Read/Write over AUX CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Only</td>
</tr>
<tr>
<td>Read Only</td>
</tr>
</tbody>
</table>
MST Compliance Test Introduction

Reference: DP 1.2a Standard

<table>
<thead>
<tr>
<th>DisplayPort Address</th>
<th>Definition</th>
<th>Read/Write over AUX CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Configuration Field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00100h</td>
<td>LINK_BW_SET : Main Link Bandwidth Setting=Value x 0.27Gbps per lane
Bits 7:0 = LINK_BW_SET
For DisplayPort Version 1, Revision 1a, only three values are supported. All other values are RESERVED.
06h = 1.62Gbps per lane
0Ah = 2.7Gbps per lane
14h = 5.4Gbps per lane
The Source may choose any of the three link bandwidths as long as it does not exceed the capability of DisplayPort receiver as indicated in the receiver capability field.</td>
<td>Write/Read</td>
</tr>
<tr>
<td>00101h</td>
<td>LANE_COUNT_SET : Main Link Lane Count = Value
Bits 4:0 = LANE_COUNT_SET
For DisplayPort Version 1, Revision 1a, only the following three values are supported. All other values are RESERVED.
1h = 1-lane
2h = 2-lanes
4h = 4-lanes
For 1-lane configuration, Lane 0 is used. For 2-lane configuration, Lane 0</td>
<td>Write/Read</td>
</tr>
</tbody>
</table>
MST Compliance Test Introduction

Check Link Training = HBR2

Link may not train to HBR2 if bandwidth need is lower
MST Compliance Test Introduction

Check for DPCD Revision= 1.2

Unigraf DisplayPort AUX Channel monitor report

AUX CHANNEL TRANSATIONS AND EVENTS

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Time</th>
<th>Event Type</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>DPA-400 INFO</td>
<td>Start: HPD=Low INO=High IN1=High IN2=Hi</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>Unknown Event</td>
<td>Changed: HPD=High</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7368.77</td>
<td>Source Native</td>
<td>Req RD 1 bytes from 0x000000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7368.83</td>
<td>Sink Native AUX_ACK, 1 bytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7368.96</td>
<td>Source Native</td>
<td>Req RD 5 bytes from 0x680000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7369.02</td>
<td>Sink Native AUX_ACK, 5 bytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7369.15</td>
<td>Source Native</td>
<td>Req RD 1 bytes from 0x680200</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7369.25</td>
<td>Sink Native AUX_ACK, 1 bytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7369.34</td>
<td>Source Native</td>
<td>Req RD 1 bytes from 0x68029</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7369.41</td>
<td>Sink Native</td>
<td>AUX_ACK, 1 bytes</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7369.56</td>
<td>Source Native</td>
<td>Req RD 16 bytes from 0x000000</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7369.76</td>
<td>Sink Native</td>
<td>AUX_ACK, 16 bytes</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7369.93</td>
<td>Source Native</td>
<td>Req RD 3 bytes from 0x000200</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>7370.05</td>
<td>Sink Native</td>
<td>AUX_ACK, 3 bytes</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7370.18</td>
<td>Source Native</td>
<td>Req RD 1 bytes from 0x00330</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7370.27</td>
<td>Sink Native AUX_ACK, 1 bytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>7370.37</td>
<td>Source Native</td>
<td>Req RD 16 bytes from 0x00080</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7370.43</td>
<td>Sink Native</td>
<td>AUX_ACK, 16 bytes</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>7370.56</td>
<td>Source Native</td>
<td>Req RD 1 bytes from 0x0050a</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7370.75</td>
<td>Sink Native</td>
<td>AUX_ACK, 1 bytes</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>7370.85</td>
<td>Source Native</td>
<td>Req RD 4 bytes from 0x002002</td>
<td></td>
</tr>
</tbody>
</table>

TRANSACTION DETAILS

4 AUX_ACK, 1 bytes

- **Info**
 - Time: 7368.03ms
 - Event: Native
 - Source: Sink

- **HEX Dump**
 - 00 12

- **Content decoder**
 - Line #4: 7368.83ms
 - AUX_ACK, 1 bytes
 - DPCD_REV[8:0] (DPCD revision number)
 - 0x0000 = 0x12
 - DPCD v1.2
MST Compliance Test Introduction

Check for EDID from Sideband Messages

<table>
<thead>
<tr>
<th>Sink</th>
<th>Native</th>
<th>AUX_ACK</th>
<th>7 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>237</td>
<td>0x507.20</td>
<td>Sink T.</td>
<td>Sb Reply</td>
</tr>
<tr>
<td>238</td>
<td>0x507.36</td>
<td>Source</td>
<td>Native</td>
</tr>
<tr>
<td>239</td>
<td>0x507.42</td>
<td>Sink</td>
<td>Native</td>
</tr>
<tr>
<td>240</td>
<td>0x430.70</td>
<td>Source</td>
<td>Native</td>
</tr>
<tr>
<td>241</td>
<td>0x430.85</td>
<td>Sink</td>
<td>Native</td>
</tr>
<tr>
<td>242</td>
<td>0x440.03</td>
<td>Source</td>
<td>Native</td>
</tr>
<tr>
<td>243</td>
<td>0x440.10</td>
<td>Sink</td>
<td>Native</td>
</tr>
<tr>
<td>244</td>
<td>0x472.93</td>
<td>Unknown</td>
<td>Event</td>
</tr>
<tr>
<td>245</td>
<td>0x473.66</td>
<td>Unknown</td>
<td>Event</td>
</tr>
<tr>
<td>246</td>
<td>0x473.89</td>
<td>Source</td>
<td>Native</td>
</tr>
<tr>
<td>247</td>
<td>0x473.98</td>
<td>Sink</td>
<td>Native</td>
</tr>
<tr>
<td>248</td>
<td>0x474.21</td>
<td>Source</td>
<td>Native</td>
</tr>
<tr>
<td>249</td>
<td>0x474.27</td>
<td>Sink</td>
<td>Native</td>
</tr>
<tr>
<td>250</td>
<td>0x474.43</td>
<td>Source</td>
<td>Native</td>
</tr>
<tr>
<td>251</td>
<td>0x474.53</td>
<td>Sink</td>
<td>Native</td>
</tr>
<tr>
<td>252</td>
<td>0x474.72</td>
<td>Source</td>
<td>Native</td>
</tr>
<tr>
<td>253</td>
<td>0x474.62</td>
<td>Sink</td>
<td>Native</td>
</tr>
<tr>
<td>254</td>
<td>0x475.04</td>
<td>Source</td>
<td>Native</td>
</tr>
<tr>
<td>255</td>
<td>0x475.10</td>
<td>Sink</td>
<td>Native</td>
</tr>
</tbody>
</table>

Show printer friendly format... Show report information...
Check Allocate Payload

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Source</th>
<th>Native</th>
<th>Req WR 16 bytes to 0x01000</th>
</tr>
</thead>
<tbody>
<tr>
<td>918</td>
<td>10244.99</td>
<td>Source</td>
<td>Native</td>
<td>Req WR 16 bytes to 0x01000</td>
</tr>
<tr>
<td>919</td>
<td>10244.99</td>
<td>Source T. SD Req.</td>
<td>DOWN REQ - REPLY: ALLOCATE PAYLOAD</td>
<td></td>
</tr>
<tr>
<td>920</td>
<td>10245.44</td>
<td>Sink</td>
<td>Native</td>
<td>AUX DEFER, 0 bytes</td>
</tr>
<tr>
<td>921</td>
<td>10245.92</td>
<td>Source</td>
<td>Native</td>
<td>Req WR 16 bytes to 0x01000</td>
</tr>
</tbody>
</table>

Content decoder

```
Line #933 - 10247.90ms
DOWN_REQ - REPLY: ALLOCATE PAYLOAD

-- Sideband message header --
Link_Count_Total = 1
Link_Count_Remaining = 0
Broadcast_Message = 0
Path_Message = 1
MSG_Body_Length = 6
Start_Of_MT = 1
End_Of_MT = 1
Message_Sequnce_No = 0

-- Sideband message validity check --
MSG_Header_CRC = 5 [Good]
MSG_Body_CRC = 7 [Good]
Header Reserved (Zero) fields = Good

-- Message Transaction decoded --
ACK
Request_Identifier = 0x11 [ALLOCATE PAYLOAD]
Port_Number = 6
Virtual_Channel_Payload_ID = 2
Payload_Bandwidth_Number = 689
```

Graphics driver may allocate all remaining bandwidth to the last device in the chain
MST Compliance Test Introduction

Check GUID

<table>
<thead>
<tr>
<th>Time</th>
<th>PMID</th>
<th>Sink T.</th>
<th>Sd Req.</th>
<th>UP REQ - REQ: CONNECTION STATUS NOTIFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1037</td>
<td>56493.89</td>
<td>Sink T.</td>
<td>Sd Req.</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1038</td>
<td>56494.05</td>
<td>Source T.</td>
<td>Sd Req.</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1039</td>
<td>56494.11</td>
<td>Sink T.</td>
<td>Sd Req.</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1040</td>
<td>56494.24</td>
<td>Source T.</td>
<td>Sd Req.</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1041</td>
<td>56494.24</td>
<td>Source T.</td>
<td>Sd Reply</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1042</td>
<td>56494.37</td>
<td>Sink T.</td>
<td>Sd Req.</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1043</td>
<td>56494.50</td>
<td>Source T.</td>
<td>Sd Req.</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1044</td>
<td>56495.42</td>
<td>Source T.</td>
<td>Sd Req.</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1045</td>
<td>56495.55</td>
<td>Sink T.</td>
<td>Sd Req.</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1046</td>
<td>56495.67</td>
<td>Unknown Event</td>
<td>Changed: HFP-Low</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1047</td>
<td>56495.67</td>
<td>Unknown Event</td>
<td>Changed: HFP-High</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1048</td>
<td>56495.63</td>
<td>Source T.</td>
<td>Sd Req.</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1049</td>
<td>56495.73</td>
<td>Sink T.</td>
<td>Sd Req.</td>
<td>UP REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1050</td>
<td>56495.83</td>
<td>Source T.</td>
<td>Sd Req.</td>
<td>Up REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1051</td>
<td>56495.93</td>
<td>Sink T.</td>
<td>Sd Req.</td>
<td>Up REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1052</td>
<td>56495.94</td>
<td>Source T.</td>
<td>Sd Reply</td>
<td>Up REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1053</td>
<td>56495.99</td>
<td>Sink T.</td>
<td>Sd Reply</td>
<td>Up REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1054</td>
<td>56495.10</td>
<td>Source T.</td>
<td>Sd Reply</td>
<td>Up REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1055</td>
<td>56495.11</td>
<td>Sink T.</td>
<td>Sd Reply</td>
<td>Up REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1056</td>
<td>56495.12</td>
<td>Source T.</td>
<td>Sd Reply</td>
<td>Up REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1057</td>
<td>56495.19</td>
<td>Sink T.</td>
<td>Sd Reply</td>
<td>Up REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
<tr>
<td>1058</td>
<td>56495.20</td>
<td>Source T.</td>
<td>Sd Reply</td>
<td>Up REQ - REQ: CONNECTION STATUS NOTIFY</td>
</tr>
</tbody>
</table>

Content decoder

- **Line #1037 - 56493.89ms**
- **UP REQ - REQ: CONNECTION STATUS_NOTIFY**

 Sideband message header
 - **Link_Count_Total** = 1
 - **Link_Count_Remaining** = 7
 - **Broadcast_Message** = 1
 - **Path_Message** = 0
 - **MSG_Body_Length** = 20
 - **Start_Of_MT** = 1
 - **End_Of_MT** = 1
 - **Message_Sequence_No** = 0

 Sideband message validity check
 - **MSG_Header_CRC** = 6 (Good)
 - **MSG_Body_CRC** = 193 (Good)
 - **Header Reserved (Zero) fields** = Good

 Message Transaction decoded
 - **CONNECTION_STATUS_NOTIFY** (0x02)
 - **Port_Number** = 1
 - **Global.Unique_IDentifier** = 0x10de90700000000217ed295500000036
 - **Legacy_Device_Plug_Status** = 0
 - **Display_Port_Device_Plug_Status** = 1
 - **Messaging_Capability_Status** = 0
 - **Input_Port** = 0
 - **Peer_Device_Type** = 3
MST Compliance Test Introduction

- Interoperability Test

Position 0
PC

Position 1
Branch Sink 0

Position 2
Branch Sink 1

Position 3
Branch Sink 2

Position 4
SST Sink

✓ System Sleep/Monitor Sleep
✓ HDCP/Hot-Plug
✓ Power Cycle
Live Demo about MST Compliance Test

Test Equipment for Demo

MST Source

Aux Monitor

Branch Sink

Let’s GO
Live Demo about MST Compliance Test

Test Configuration A for Demo

MST Source

Aux Monitor

Branch Sink

Let’s GO
Live Demo about MST Compliance Test

Test Configuration B for Demo

MST Source

Aux Monitor

Branch Sink

Let’s GO
One Stop Logo Solution at Allion

Bus Interface

Radio Frequency

OS, Content & Storages
Live Demo about MST Compliance Test

Thank you!